
Lecture 23

Multinomial Theorem and Principle of Inclusion-Exclusion



Multinomial Theorem: For all non-negative integer  and ,n k

(x1 + x2 + … + xk)n = ∑
a1,a2,…,ak

( n
a1, a2, …, ak)xa1

1 xa2
2 …xak

k

where the sum is taken over all -tuples of  such that  and .k a1, a2, …, ak ai ∈ ℕ n =
k

∑
i=1

ai

Multinomial coefficients

Multinomial Theorem



Relating Binomial and Multinomial Coefficients

Theorem: For all non-negative integers  and , ,  such that .,n a1 a2 …, ak n =
k

∑
i=1

ai

( n
a1, a2, …, ak) = ( n

a1)(n − a1

a2 )(n − a1 − a2)a3
…… (n − a1 − a2 − … − ak−1)ak

 linear ordering of a 
multiset of  objects

 where  items are of type .

#
n

ai i
 different positions 

type 1 objects can take in 
linear ordering of  objects. 

#

n

 different positions type 2 objects 
can take in linear ordering of  objects 

after type 1 objects are placed. 

#
n

 different positions type  objects 
can take in linear ordering of  objects 

after type 1 & 2 objects are placed. 

# 3
n

 different positions type  objects 
can take in linear ordering of  objects 
after other types of objects are placed. 

# k
n



Multinomial Theorem: For all non-negative integer  and ,n k

(x1 + x2 + … + xk)n = ∑
a1,a2,…,ak
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ai

Multinomial Theorem

Proof:

To get  we have to choose  from exactly  parentheses.xa1
1 xa2

2 …xak
k xi ai

We will prove that  occurs   times in the expansion ofxa1
1 xa2

2 …xak
k ( n

a1, a2, …, ak)
.(x1 + x2 + … + xk)n



 times  occurs in the expansion of # xa1
1 xa2

2 …xak
k (x1 + x2 + … + xk)n

=

 ways  can be 

picked from  parentheses


 out of  parentheses.  

# x1
a1

n
×

 ways  can be 

picked from  parentheses

 out of  parentheses.  

# x2
a2

n − a1

  × … ×

 ways  can be 

picked from  parentheses


 out of  parentheses. 

# xk
ak

n −
k−1

∑
i=1

ai
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×   × … ×( n
a1) (n − a1

a2 ) n − ∑k−1
i=1 ai

ak

=
=

( n
a1, a2, …, ak) ◼



Idea: Principle of Inclusion-Exclusion
There are  students in a high school class who play soccer, and there are 

students who play basketball.

14 17

How many students play soccer or basketball?

 might not be the right answer because some students might be playing both sports.14 + 17

Suppose  students play both the sports. Then,4

 students who play soccer or basketball#  = 14 + 17 − 4

414 17

Subtracting the 
overcounted.

Soccer Basketball



Idea: Principle of Inclusion-Exclusion
Early instances of principle of inclusion-exclusion:

‣ |A1 ∪ A2 | = |A1 | + |A2 | − |A1 ∩ A2 |

‣  |A1 ∪ A2 ∪ A3 | = |A1 | + |A2 | + |A3 | − |A1 ∩ A2 | − |A2 ∩ A3 | − |A3 ∩ A1 |

+ |A1 ∩ A2 ∩ A3 |

A1

A2

A3

x z

y
w



Principle of Inclusion-Exclusion

Theorem: Let  be the finite sets. Then,A1, A2, …, An

|A1 ∪ A2 ∪ … ∪ An |  =
n

∑
j=1

(−1) j−1 ∑
i1,i2,…,ij

|Ai1 ∩ Ai2 ∩ … ∩ Aij |

Proof:

Let .x ∈ A1 ∪ A2 ∪ … ∪ An

We show that each element in  is counted exactly once on the RHS.A1 ∪ A2 ∪ … ∪ An

Let  such that  iff .S = {i1, i2, …, is} x ∈ Ai i ∈ S

Observation:      contains  if and only if .Ai1 ∩ Ai2 ∩ … ∩ Aik x {i1, i2, …, ik} ⊆ S



‣ Counted  times in single intersections. s

 is counted or subtracted the following times on the RHS:x

‣ Subtracted  times in double intersections. (s
2)

Principle of Inclusion-Exclusion

‣ Counted  times in triple intersections. (s
3)
⋮

So, RHS counts  x

 s −(s
2)+(s

3) −(s
4) … +(−1)s−1(s

s)   = 1
◼


