Lecture 23

Multinomial Theorem and Principle of Inclusion-Exclusion

Multinomial Theorem

Multinomial Theorem: For all non-negative integer n and k,

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{a_1, a_2, \dots, a_k}^{n}$$

Relating Binomial and Multinomial Coefficients

different positions type 2 objects can take in linear ordering of *n* objects after type 1 objects are placed.

linear ordering of a # different positions multiset of n objects type 1 objects can take in where a_i items are of type *i*. linear ordering of *n* objects.

different positions type k objects can take in linear ordering of *n* objects after other types of objects are placed.

Theorem: For all non-negative integers *n* and $a_1, a_2, ..., a_k$ such that $n = \sum_{i=1}^k a_i$.

different positions type 3 objects can take in linear ordering of *n* objects after type 1 & 2 objects are placed.

Multinomial Theorem

Multinomial Theorem: For all non-negative integer n and k,

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{a_1, a_2, \dots, a_k} \binom{n}{a_1, a_2, \dots, a_k} x_1^{a_1} x_2^{a_2} \dots x_k^{a_k}$$

sum is taken over all k-tuples of a_1, a_2, \dots, a_k such that $a_i \in \mathbb{N}$ and $n = \sum_{i=1}^k a_i$
will prove that $x_1^{a_1} x_2^{a_2} \dots x_k^{a_k}$ occurs $\binom{n}{a_1, a_2, \dots, a_k}$ times in the expansion of

where the s

Proof: We v $(x_1 + x_2 + \ldots + x_k)^n$.

To get $x_1^{a_1}x_2^{a_2}...x_k^{a_k}$ we have to choose x_i from exactly a_i parentheses.

i•

Multinomial Theorem

ways x_1 can be # ways x_{-} picked from a_1 parentheses X picked from a_2 out of $n - a_1$ out of *n* parentheses.

 $\binom{n}{a_1} \times \binom{n}{a_1}$

times $x_1^{a_1} x_2^{a_2} \dots x_k^{a_k}$ occurs in the expansion of $(x_1 + x_2 + \dots + x_k)^n$

$$f_2$$
 can be
 f_2 can be
 f_2 parentheses $\times \ldots \times$
parentheses.
 $\sum_{i=1}^{k-1} a_i$ parentheses.
 $\frac{k-1}{i=1} = 1$

$$\begin{array}{c} || \\ -a_1 \\ a_2 \end{array} \right) \times \ldots \times \left(\begin{array}{c} n - \sum_{i=1}^{k-1} a_i \\ a_k \end{array} \right)$$

Ш

 $a_1, a_2, ..., a_k$

Idea: Principle of Inclusion-Exclusion

There are 14 students in a high school class who play soccer, and there are 17students who play basketball.

How many students play soccer or basketball?

14 + 17 might not be the right answer because some students might be playing both sports.

Suppose 4 students play both the sports. Then,

students who play soccer or basketball = 14 + 17 - 4Subtracting the

overcounted.

) Basketbal

Idea: Principle of Inclusion-Exclusion

Early instances of principle of inclusion-exclusion:

- $|A_1 \cup A_2| = |A_1| + |A_2| |A_1 \cap A_2|$
- $|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| |A_1 \cap A_2| |A_2 \cap A_3| |A_3 \cap A_1|$ $+ |A_1 \cap A_2 \cap A_3|$

Principle of Inclusion-Exclusion

Theorem: Let $A_1, A_2, ..., A_n$ be the finite sets. Then,

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{j=1}^n (-1)^{j-1} \sum_{i_1, i_2, \dots, i_j} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_j}|$$

Let $\mathbf{x} \in A_1 \cup A_2 \cup \ldots \cup A_n$.

Let $S = \{i_1, i_2, \dots, i_s\}$ such that $x \in A_i$ iff $i \in S$.

Proof: We show that each element in $A_1 \cup A_2 \cup \ldots \cup A_n$ is counted exactly once on the RHS.

- **Observation:** $A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}$ contains x if and only if $\{i_1, i_2, \ldots, i_k\} \subseteq S$.

Principle of Inclusion-Exclusion

x is counted or subtracted the following times on the RHS:

- Counted s times in single intersections.
- Subtracted $\binom{s}{2}$ times in double intersections. • Counted $\begin{pmatrix} s \\ 3 \end{pmatrix}$ times in triple intersections.

So, RHS counts *x*

$$s - {\binom{s}{2}} + {\binom{s}{3}} - {\binom{s}{4}}$$

