Lecture 23

Multinomial Theorem and Principle of Inclusion-Exclusion

Multinomial Theorem

Multinomial coefficients

Multinomial Theorem: For all non-negative integer n and k,

$$
\left(x_{1}+x_{2}+\ldots+x_{k}\right)^{n}=\sum_{a_{1}, a_{2}, \ldots, a_{k}}\binom{n}{a_{1}, a_{2}, \ldots, a_{k}} x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}}
$$

where the sum is taken over all k-tuples of $a_{1}, a_{2}, \ldots, a_{k}$ such that $a_{i} \in \mathbb{N}$ and $n=\sum_{i=1}^{k} a_{i}$.

Relating Binomial and Multinomial Coefficients

\# different positions type 2 objects can take in linear ordering of n objects after type 1 objects are placed.

\# different positions type k objects can take in linear ordering of n objects after other types of objects are placed.
Theorem: For all non-negative integers) n and $a_{1}, a_{2}, \ldots, a_{k}$ such that $n=\sum_{i=1}^{k} a_{i}$, $\binom{n}{a_{1}, a_{2}, \ldots, a_{k}}=\binom{n}{a_{1}}\binom{n-a_{1}}{a_{2}}\binom{n-a_{1}-a_{2}}{a_{3}} \ldots \ldots\binom{n-a_{1}-a_{2}-\ldots-a_{k-1}}{a_{k}}$

\# linear ordering of a multiset of n objects
where a_{i} items are of type i.

\# different positions type 1 objects can take in linear ordering of n objects.

\# different positions type 3 objects can take in linear ordering of n objects after type $1 \mathcal{E} 2$ objects are placed.

Multinomial Theorem

Multinomial Theorem: For all non-negative integer n and k,

$$
\left(x_{1}+x_{2}+\ldots+x_{k}\right)^{n}=\sum_{a_{1}, a_{2}, \ldots, a_{k}}\binom{n}{a_{1}, a_{2}, \ldots, a_{k}} x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}}
$$

where the sum is taken over all k-tuples of $a_{1}, a_{2}, \ldots, a_{k}$ such that $a_{i} \in \mathbb{N}$ and $n=\sum_{i=1}^{k} a_{i}$.
Proof: We will prove that $x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}}$ occurs $\binom{n}{a_{1}, a_{2}, \ldots, a_{k}}$ times in the expansion of

$$
\left(x_{1}+x_{2}+\ldots+x_{k}\right)^{n} .
$$

To get $x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}}$ we have to choose x_{i} from exactly a_{i} parentheses.

Multinomial Theorem

\# times $x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{k}^{a_{k}}$ occurs in the expansion of $\left(x_{1}+x_{2}+\ldots+x_{k}\right)^{n}$
II
\# ways x_{1} can be
picked from a_{1} parentheses
out of n parentheses.
\# ways x_{2} can be
\times picked from a_{2} parentheses out of $n-a_{1}$ parentheses.
\# ways x_{k} can be picked from a_{k} parentheses
$\times \ldots \times$ out of $n-\sum_{i=1}^{k-1} a_{i}$ parentheses.

II

$$
\binom{n}{a_{1}} \times\binom{ n-a_{1}}{a_{2}} \times \ldots \times\binom{ n-\sum_{i=1}^{k-1} a_{i}}{a_{k}}
$$

II

$$
\binom{n}{a_{1}, a_{2}, \ldots, a_{k}}
$$

Idea: Principle of Inclusion-Exclusion

There are 14 students in a high school class who play soccer, and there are 17 students who play basketball.

How many students play soccer or basketball?
$14+17$ might not be the right answer because some students might be playing both sports. Suppose 4 students play both the sports. Then,

$$
\# \text { students who play soccer or basketball }=14+17-4
$$

Idea: Principle of Inclusion-Exclusion

Early instances of principle of inclusion-exclusion:

- $\left|A_{1} \cup A_{2}\right|=\left|A_{1}\right|+\left|A_{2}\right|-\left|A_{1} \cap A_{2}\right|$
- $\left|A_{1} \cup A_{2} \cup A_{3}\right|=\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-\left|A_{1} \cap A_{2}\right|-\left|A_{2} \cap A_{3}\right|-\left|A_{3} \cap A_{1}\right|$

$$
+\left|A_{1} \cap A_{2} \cap A_{3}\right|
$$

Principle of Inclusion-Exclusion

Theorem: Let $A_{1}, A_{2}, \ldots, A_{n}$ be the finite sets. Then,

$$
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=\sum_{j=1}^{n}(-1)^{j-1} \sum_{i_{1}, i_{2}, \ldots, i_{j}}\left|A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{j}}\right|
$$

Proof: We show that each element in $A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is counted exactly once on the RHS. Let $x \in A_{1} \cup A_{2} \cup \ldots \cup A_{n}$.

Let $S=\left\{i_{1}, i_{2}, \ldots, i_{S}\right\}$ such that $x \in A_{i}$ iff $i \in S$.
Observation: $A_{i_{1}} \cap A_{i_{2}} \cap \ldots \cap A_{i_{k}}$ contains x if and only if $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq S$.

Principle of Inclusion-Exclusion

x is counted or subtracted the following times on the RHS:

- Counted s times in single intersections.
- Subtracted $\binom{s}{2}$ times in double intersections.
- Counted $\binom{s}{3}$ times in triple intersections.

So, RHS counts x

$$
s-\binom{s}{2}+\binom{s}{3}-\binom{s}{4} \cdots+(-1)^{s-1}\binom{s}{s}=1
$$

